In figure, the coefficient of friction between the floor and the block $B$ is $0.2$ and  between blocks $A$ and $B$ is $0.3$. ........ $N$  is the maximum horizontal force $F$ can be  applied to the block $B$ so that both blocks move together .

827-30

  • A

    $60$

  • B

    $120$

  • C

    $240$

  • D

    $300$

Similar Questions

Which is a suitable method to decrease friction

As shown in the figure, a block of mass $\sqrt{3}\, kg$ is kept on a horizontal rough surface of coefficient of friction $\frac{1}{3 \sqrt{3}}$. The critical force to be applied on the vertical surface as shown at an angle $60^{\circ}$ with horizontal such that it does not move, will be $3 x$. The value of $3x$ will be

$\left[ g =10 m / s ^{2} ; \sin 60^{\circ}=\frac{\sqrt{3}}{2} ; \cos 60^{\circ}=\frac{1}{2}\right]$

  • [JEE MAIN 2021]

A body of weight $50 \,N$ placed on a horizontal surface is just moved by a force of $28.2\, N$. The frictional force and the normal reaction are

A rope of length $L$ and mass $M$ is being pulled on a rough horizontal floor by a constant horizontal force $F$ = $Mg$ . The force is acting at one end of the rope in the same direction as the length of the rope. The coefficient of kinetic friction between rope and floor is $1/2$ . Then, the tension at the midpoint of the rope is

To avoid slipping while walking on ice, one should take smaller steps because of the